TR5000

Description:

The TR5000 is a Full Logic Control Process ratemeter that can display up to three separate values of rate and compare them to programmable set points. Rates A \& B can be programmed by the user for speed or time in process. Rate C allows the user to display a relationship between Rates $\mathrm{A} \& \mathrm{~B}$. This can be a Ratio (A/B), Sum (A+B), Difference (A-B), or Draw (A-B)/B. A Ratio is typically used in blending and mixing applications. The Sum and Difference are commonly used when the operator needs to display the combined output of two separate but related processes. Draw is commonly used in web handling systems, such as plastic or wire, to indicate the thickness or stretch of the material being processed.

Principle of Operation:

The TR5000 is supplied with a shaft mounted magnetic disc or optional pulser wrap, which generates 8 pulses per revolution with our standard non-contact sensor. The sensor transmits the speed as a digital pulse frequency to the TR5000 via a three conductor shielded cable. The TR5000, then compares this frequency signal to its programming and determines the appropriate set point output state and display value. The TR5000 features three transistor outputs that can be set within any of the three rates A, B, or C. These outputs can be programmed to latch (requiring a manual reset), or stay active only when the set point condition is present. The TR5000 set point delay allows the user to program how long the set point must be exceeded before the set point output activates.

Pulser Disc:

The end of the shaft to be monitored must be center drilled to a depth of $1 / 2$ inch with a No. 21 drill, and tapped for 10-32 UNF. Apply Loctite ${ }^{\circledR}$ a similar adhesive on the screw threads to keep the pulser disc tight. Attach the disc, decal side out, with the 1032 UNF machine screw and lock washer provided. Pulser Discs can be used with all Electro-Sensors, Inc. sensors.

Pulser Wrap (optional):

Pulser Wraps are custom manufactured to fit the specific diameter of the shaft on which they will be mounted. When the wrap is shipped, four Allen-Head cap screws hold the two halves of the wrap together. These screws must be removed so that the wrap is in two halves. Place the halves around the shaft, re-insert the screws and torque them to 8 foot-pounds. Pulser Wraps can be used with all Electro-Sensors, Inc. sensors.

Sensor Installation:

The standard sensor is supplied with a mounting bracket and two jam nuts. The explosionproof sensor is supplied with a slotted mounting bracket. Sensors should be installed so the center line of the magnets passes in front of the center line of the sensor as the disc or wrap rotates. When using the pulser disc, the center
line of the magnetized area of the disc, shown as Dimension B, in figures 1 and 3 , is $1-3 / 4$ inches from the center hole of the disc. The gap distance between the sensor and the disc or wrap, Dimension A, in the diagrams, can be $1 / 4$ in. $+/-1 / 8$ in. To achieve the proper gap distance, adjust the jam nuts holding the standard sensor in the mounting bracket, or adjust the position of the explosionproof sensor, using the slots on the mounting bracket.

Figure 1: Standard 906 Sensor and Pulser Disc

Figure 2: Standard 906 Sensor and Pulser Wrap

Figure 3: Explosion proof 907 Sensor and Pulser Disc

Figure 4: Explosion proof 907 Sensor and Pulser Wrap

Phone: 952.930.0100
Free Catalog and Application Assistance 1.800.328.6170 Visit Us Online www.electro-sensors.com ISO 9001:2000 Certified

Introduction:

The TR5000 is a multi-purpose tachometer, featuring multiple display options and set point outputs. It can display as a timebased tach, ratio tach, time in process tach, summing tach, or subtracting tach. The three programmable outputs can be programmed to give an indication, or enable other machine functions based on the tachometer's logic.

Figure 5: TR5000 Front View

Entering Variables into the TR5000:

To change a variable, press the "VAR key. The "PROG" LED will light, and the display will read "Pr," followed by the presently selected variable number. Press the " $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ " keys to change the value of the 1 s location to the desired variable number. Then use the " \langle " key to move to the 10 s position and change the value of the desired number. Press the "ENTER" key and the selected variable's value will be displayed, and the 1 s location will flash in the display window. Press the " $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ " keys to change the value of the 1s location. Use the " \langle " or " $>$ " keys to move to the 10 s, $100 \mathrm{~s}, 1000 \mathrm{~s}$, or $10,000 \mathrm{~s}$ position (the selected position will flash) and then use the " $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ " keys to change the value. If the entry is a negative number, the 10,000 s position must be used to enter the minus sign.

The minus is found between the 0 and 9 , while scrolling through the numbers. Only variables that allow a negative number will allow this. To add a decimal point, press the " \bullet " key. The decimal point will scroll from right to left one digit each time the " \bullet " key is pressed. Press the "ENTER" key to enter the new value. Pressing the "VAR" key without pressing "ENTER" will keep the old value and return the tach to the readout mode.

Note: The variables are protected by Variable 00 - Security Code. You may view variables, but cannot change them unless the correct security code is entered. See page 6, for the complete variable list.

Wiring the TR5000 Connections:

The Standard TR 5000 uses $115 \mathrm{Vac}, 7$ VA at $50 / 60 \mathrm{~Hz}$ with 230 Vac available as an option. External fusing must be provided by the customer. The recommended fuse size is $1 / 16 \mathrm{amp}$ slow-blow.

Figure 6: TR5000 Wiring Diagram
Panel Cutout: (See Dimensional Drawings page 6)
Remove mounting brackets. Slide the controller into the cutout. Replace the mounting bracket and replace the screws. Do not over-tighten.

AC Switch Inputs:

lnput 1 -TB2-1, lnput 2 --rB2-2, lnput 3 - TB2-3 are programmable inputs and are programmed by variable 22 . They can be used to reset any of the outputs, freeze the display or select the rate, Inputs 1,2 and 3 require AC voltage equal to the supply voltages. This voltage must be the same voltage as supplied to the Line (LI) Input. The opposite sides (non-terminalled) of these solid state inputs are tied to the Neutral (L2) Input.

A \& B Signal Inputs:

TB2-7 - A Signal Input, TB2-8 - B Signal Input: These inputs require a frequency input relative to speed. Devices such as HallEffect sensors, encoders, or magnetic pickups can all be used. Power for sensors is provided across TB2-6 (+I2 VDC) and TB2-5 (Common). The maximum power draw available is 100 mA at an unregulated 12 Vdc . Wiring to these inputs should be done with shielded cable with the shield tied to TB2-5 only.
Note: Never use shielded cable with extra conductors. Extra conductors act as antennas that pick up electrical noise. This is one of the most common reasons for electrical noise on the frequency input signals.

Sensor Input Configuration Switches:

The default switch selection settings comply with Electro-
Sensors, NPN type sensors.

Signal	Input Type	Switches ON	Switches OFF
A Signal TB2-7	NPN	7	$5,6,8$
	PNP	8	$5,6,7$
	Mag. Pickup 2 wire	5,6	7,8
	Logic Level	None	$5,6,7,8$
B Signal TB2-8	NPN	3	$1,2,4$
	Mag. Pickup 2-Wire	1,2	3,4
	Logic Level	None	$1,2,3,4$

Sensor Input Configuration:

Figure 7: DIP-Switch Location

Switch Location:
Sensor Wire Connections:

Terminal	Description	Sensor Model $\mathbf{9 0 6 / 9 0 7}$	All Other ESI Sensors
TB2-5	Common	Clear	Black
TB2-6	Supply	Red	Red
TB2-7	A Signal	Black	Clear
TB2-8	B Signal	Black	Clear

Programming The TR5000:

Programming Security:

Variable 00 - Security Code: The security code must be entered in this variable before any variables can be changed. The functions which are locked out can be modified using Variable 10. To re-lock functions, change Variable 00 to any number other than the security code. The default value for the Security Code is 5000.

Variable 10 - Keypad Lockout:

This function selects the keys that are enabled or disabled when security is set.

Programming Rate A and Rate B:

The TR5000 has the ability to display two separate rate inputs. Rate A displays the A Signal Input, and Rate B displays the B Signal Input. The options for display also include displaying them as a Speed
(motion/time) or as a Time in Process Tach (time/motion) as programmed with variable 09 . Variables 01 through 03 program Rate A, and variables 04 through 06 program Rate B.
Note: Electro-Sensors model 906 sensor with a model 255 disc provides 8 PPR.

Rate A:

Variable 01 - A Signal Maximum RPM: Enter the maximum speed in revolutions per minute of the monitored shaft.
Variable 02 - A Signal PPR: Enter the pulses per revolution of the sensor on the monitored shaft. 8 PPR is standard.
Variable 03 - A Signal Display Units: Enter the value to be displayed by the TR5000 when the monitored shaft is turning at the speed programmed in Variable 01. The placement of the decimal location will be fixed in the display mode by its placement in this variable.

Rate B:

Variable 04 - B Signal Maximum RPM: Enter the maximum speed in revolutions per minute of the monitored shaft.

Variable 05-B Signal PPR: Enter the pulses per revolution of the sensor on the monitored shaft. 8 PPR is standard.

Variable 06 - B Signal Display Units: Enter the value to be displayed by the TR5000 when the monitored shaft is turning at the speed programmed in Variable 04. The placement of the decimal location will be fixed in the display mode by its placement in this variable.

Types of Displays:

Programming the Display: Display Character

Variable 09 - Rate Function: Selects the type of display for rates $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D .

Rates A \& B Options: Speed: This is the most commonly selected display option. Speed is calculated by the formula $($ motion/time $)=$ display. The examples of this type of display are RPM and FPM. Time in Process: The Time In Process display
is the inverse of the speed display and is found by the formula $($ time $/$ motion $)=$ display.

Rate C Options:

Sum: A+B: This display option will add the values of the Rate A and Rate B and display the result. The Display Scaling Factor (Variable 08) will multiply this display. The decimal point location will be displayed based on Rate A's decimal place.

Difference: A-B: This display option will subtract Rate B from Rate A. It is possible to have a negative display value. The Display Scaling Factor (Variable 08) will multiply this display and controls the decimal point placement during the display.

Draw: (A-B)/B: This display option will give the percent of difference between the A and B rates. This display can be negative. The Display Scaling Factor (Variable 08) will multiply this display and control the decimal point placement in the display.

Ratio: $\boldsymbol{A} / \boldsymbol{B}$, This display option gives the ratio between Rates A and Rates B. It is not affected by the display scaling factor (Variable 07) but instead uses the Unity User Ratio. This is the value to be displayed when the ratio between Rates A and B is equal to the ratio between Variables 01 and 04 .

Rate D Options: These are diagnostic displays. The Rate C LED will flash when selected.

A Input Hertz - Frequency of the A input signal.
B Input Hertz - Frequency of the B input signal.
DAC Output - Present output value of the optional 4-20mA outputs in bits (0 to 4095).

Input Status - Status of the three digital inputs. 1 is $\mathrm{ON}, 0$ is OFF.

Output Status - Status of the three digital outputs. 1 is energized, 0 is de-energized.

Variable 08 - Display Scaling Factor: Rate C only. This factor multiplies the result of the Rate C calculations. It will multiply the result of the Sum, Difference, or Draw function calculations, before displaying the new value. With the Difference of Draw functions, it will also specify where to place the decimal point while displaying the new value. This variable can be a negative
number.
Variable 07 - User Unity Ratio: Rate C Only. This variable specifies the value to be displayed when rates A and B are operating at the speed relationship programmed into variables 01 and 04 (Signal at Maximum RPM). The placement of the decimal point in this variable will control the placement of the decimal point while displaying Rate C with the ratio function selected. This variable can be a negative number.

Variable 25 - Range Selection: The TR5000 has a default range of 500 to 1 . This means that when the TR5000 is programmed to display 1800 rpm as its maximum, it will read any speed under 3.6 rpm as 0 rpm . This is used to prevent long update times before displaying 0 rpm . If the TR5000 doesn't get to a 0 display as fast as you would like, then decreasing the Range Selection value will decrease the time to read 0 speed, but it will increase the minimum speed displayed by the TR5000. The default setting is appropriate for most applications.

Programming The Outputs: Display Character

Variable 21 - Output Function Selection: Selects the set point function of the transistor outputs, the factory optional relay and 4 to 20 mA output. Underspeed de-energizes the output when the value is below the set point, and Overspeed de-energizes the output when the value is above the set point.

Programming Set Points for the Transistor and Relay

Outputs: (the relay outputs are optional) The Set Point Outputs are numbered 1 through 3. Upon "power up," these outputs will energize. If after the programmed start delay, a set point condition is detected, the corresponding output will de-energize.

Variable 11 - Start Delay Time: Upon "power up" or an active system reset input, the alarms are held energized until this time period has expired. Enter the desired delay time in seconds. Latching Set Point Outputs: Program the On Time Variable to 999.9 seconds, to make the output latch. This will hold the setpoint output in the de-energized state until a reset input clears the output.

Programming the Set Points:

	Output 1	Output 2	Output 3
Set Point Value	Variable 12	Variable 15	Variable 18
Delay Time	Variable 13	Variable 16	Variable 19
On Time	Variable 14	Variable 17	Variable 20

Set Point Value: Enter the set point value, based on the selected rate at which the output will de-energize. There is a 1% hysteresis for the value at which the output will reset. This variable can be negative.
Output Delay Time: Programs the amount of time the set point condition must exist, before the output will de-energize.

Output On Time: Programs the minimum time that the output will stay de-energized when a set point condition occurs. Set the On Time to 9999.9 seconds for a Latching Output. A Latching Output must be cleared by a Reset lnput (see Programming Inputs) or a "power down."

Analog 4 to 20mA Output Programming: (available as a factory option): The rate to be represented is selected in variable 21 . The 4 to 20 mA range is then specified with variable 23 and 24. The output is linear between the two specified values.

Variable 23 - Display value at 4 mA : Enter the rate display value to be represented at 4 mA output.

Variable 24 - Display Value at 20 mA : Enter the rate display value to be represented at 20 mA output.
Note: Both of the above variables can have negative values.

Programming the Switch Inputs: Display Character

Input Options
$0=$ Unused
1 = Reset Output 1
$2=$ Reset Output 2
3 = Reset Output 3
4 = Display Hold
5 = Rate Select
6 = System Reset
Variable 22 - input Switches Function Selection: Configures the function of the switch inputs to the TR5000

Rate Select: Selects displayed rate. Each activation of the input changes the rate to be displayed to the next rate. If a rate is programmed as unused, the rate will not be selected. The order for selection is A, B, C then D. The TR5000 will remember which rate was displayed at "power down" and return to that rate on "power up."

Reset Set Point Outputs 1, 2, and 3: When the input is activated, the set point output is reset. The output will remain energized until the switch is released. If the set point condition exists when the input is released, then your speed must exceed
the set point (when detecting underspeed) before an underspeed condition can be detected.

Display Hold: Freezes the display. The analog output and set point outputs are unaffected by this switch.

System Reset: Behaves like a fresh "power up" of the controller. All set point outputs are reset and go through a start delay before they will activate again.

Diagnostics:

When the "DIAG" key is pressed the TR5000 will display "dlAg" and all the LEDs except the "KEY ERR" LED will light. The LEDs will remain on until the Diagnostic Mode has been exited.

Memory and Variable Reset: Hold the "DIAG" key while "powering up" the TR5000. This will reset the memory and all variables to the factory default settings.

Reset Variables: To set the variables back to the factory default settings, press the "DIAG" key, then the "RATE key.

Keypad and Display Test: Press the "DIAG" key, then the "VAR" key to enter. This diagnostic will display 11111 through 88888 as the keys are pressed from left to right, going from top to bottom. Example: "Var" key displays 11111, " $\boldsymbol{\Delta}$ " key displays 22222. "SETPT" key displays 33333, etc.

Input Switch Test: To enter the input switch test, press the "DIAG" key, then the " $\boldsymbol{\Delta}$ " key. This diagnostic will display the status of the three AC inputs. When an input is energized, the corresponding display character will be a 1 . When an input is off, the corresponding display character will be a 0 .

Display Character $\mathbf{1 = 0}$
$0=0 f f$

Relay and Transistor Output Test: To enter the output test, press the "DIAG" key, then the " $>$ " key. The right most characters will display the status of outputs 1,2 , and 3 . To change the status of outputs 1,2 , or 3 , use the " $>$ " key to turn on output 1 , then the " $\boldsymbol{\Delta}$ " key to turn on output 2, and the " \langle " will turn on output 3. Pressing the "ENTER key will turn off all outputs.

Display Character $\mathbf{1 = O n}$ $0=0 f f$

Rate D - Diagnostic Displays: This diagnostic can be used to
read the A and B signal frequencies, and the status of all inputs and outputs. See Rate D Options (page 4) for more information.

Security Code Change: This diagnostic will change the value that must be entered into Variable 00 to access the locked out functions. Press the "DIAG" key, then the " \langle " key. The TR5000 will display the present security code number. The value can now be changed with the same method used to change variable values.

IMPORTANT: Make sure to record this value, because the control functions cannot be accessed until the new code is entered into variable 00.

4 to 20 mA Output Test: Press the "DIAG" key, and then press the " $\boldsymbol{\nabla}$ " key, this will put the TR5000 in Digital Pot Output Mode. The control will display 000%. Press the " $\boldsymbol{\Delta}$ " key to increase the output, and the " $\boldsymbol{\nabla}$ " key to decrease the output.

Listing of TR5000 Variables:

Var	Variable Name	Default	Units	New Value
00	Security Match Code	5000	Any whole number	
01	A Signal Max RPM	1800	RPM	
02	A Signal PPR	8	PPR	
03	A Signal Display Units	1800	User Defined	
04	B Signal Max RPM	1800	RPM	
05	B Signal PPR	8	PPR	
06	B Signal Display Units	1800	User Defined	
07	User Unity Ratio	1.000	1= A/B	
08	Display Scaling Factor	1.00	Multiplier of Rate C	
09	Rate Function	0000	Coded	
10	Keypad Lockout	0101	Coded	
11	Start Delay Time	1.0	Seconds	
12	Output 1 Value	1500	Display Units	
13	Output 1 delay time	1.0	Seconds	
14	Output 1 On Time	1.0	Seconds	
15	Output 2 Value	1000	Display Units	
16	Output 2 Delay Time	1.0	Seconds	
17	Output 2 On Time	1.0	Seconds	
18	Output 3 Value	500	Display Units	
19	Output 3 Delay Time	1.0	Seconds	
20	Output 3 On Time	1.0	Seconds	
21	Output Function Selection	0642	Coded	
22	Input Switch Function Select	321	Coded	
23	Display Value at 4mA	0	Display Units	
24	Display Value at 10 mA	1800	Display Units	
25	Range Selection	500	X to 1	

TR5000 Dimensional Drawings:

Figure 8: TR5000 Dimensions

Figure 9: Panel Cutout

Figure 10: 255 Pulser Disc

Figure 11: Standard 906 Sensing Head

Figure 12: Optional Explosionproof 907 Sensor

Figure 13: Explosionproof Sensor Bracket

Specifications:

Input Power	Parameters
Standard AC	$115 \mathrm{Vac}, 6 \mathrm{VA} @ 50 / 60 \mathrm{~Hz}$
Recommended Fuse	$1 / 16 \mathrm{Amp}$ Slo-Blo
Optional AC	$230 \mathrm{Vac}, 6 \mathrm{VA} @ 50 / 60 \mathrm{~Hz}$
Recommended Fuse	$1 / 32$ Amp Slo-Blo
Optional DC	$10-30 \mathrm{Vdc}$
Recommended Fuse	2 Amp Slo-Blo

Input Signal	Parameters
Transducer Input	Switch Selectable
NPN Open Collector	2200 Ohm Pull Up to 12Vdc 2.5 Volt trigger level
PNP Open Collector	2200 Ohm Pull Down 2.5 Volt trigger level
Logic Level	2.5 Volt trigger level
Magnetic Pickup	150 mv Peak to Peak Minimum signal, 50 mv trigger level
Max. Frequency	$20,000 \mathrm{~Hz}$
Min. Frequency	0.01 Hz
Transducer Supply	12 Vdc Unregulated, 100 mA Max

External Control I/O:

Input/Output	Parameters
Standard Inputs	3 Programmable AC Switch Inputs
Standard Set Point Outputs	3 Programmable, Open Collector Transistors, 30Vdc 150mA Max.
Optional Set Point Outputs	3 Programmable N.O. Contacts
Rating	250Vac 5A, 30Vdc 5A Resistive Load
Optional Analog Output	1 Programmable 4-20mA Output 12 Bits

Operational:

Set Point Data	Parameters
Accuracy	0.01%
Response Time	Minimum 0.02 Seconds
Control Range	Default 500 to 1 (Can be pro- grammed as high as 10,000 to 1 or lower)
Modes of Operation	Time In Process, Ratio, Sum, Dif- ference, Draw
Set Point Presets	3 Programmable as Over or Under of Rate A, B, or C
Display Update Time	0.5 Seconds

Mechanical:

Physical/Enviroment	Parameters
Enclosure	ABS Plastic 94V-0
Keypad	Polycarbonite Tactile Switch Pad, Chemical Resistant, Splash Proof
Display	5 Digit, 0.3 Inch Height, Seven Segment Displays, 5 Status LEDs
Operating Temperature	$0^{\circ} \mathrm{C}-50^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}-122^{\prime \prime} \mathrm{F}\right)$
Humidity	$0 \%-90 \%$ Non-Condensing

906 Sensor	Parameters
Body Material	Aluminium
Bracket Material	Steel
Thread Size	$3 / 4-16$ UNF
Output Type	Open Collector, Current Sinking 20 Ma Max
Signal Cable	$3-$ Conductor Shielded 10 ft. supplied std.
Max Cable Length	$1500 \mathrm{Ft}$.
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Air Gap	$1 / 4$ in. $+/-1 / 8 \mathrm{in}$.

| 907 Explosionproof
 Sensor (optional) | Parameters ** |
| :--- | :--- | :--- |
| | Class I, Div 1, Group D |

Mounting Bracket Material	Plate Steel U-Bolt Assembly
Other Specifications	Similar to 906 standard sensor

Pulser Disc	Parameters
Material	Nylon 12 Std. Aluminum Optional
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Maximum Speed	Consult Factory

Pulser Wrap	Parameters
Material	Consult Factory
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Maximum Speed	Consult Factory

Specifications Subject to Change Without Notice.

